Renault Eolab Concept

Renault announces EOLAB – an environmental prototype with nearly 100 technological innovations designed to deliver ultra-low fuel consumption, of one liter per one hundred kilometers, whilst maintaining established B-segment levels of performance, practicality and affordability.

Scheduled to have its World Premiere at the 2014 Paris Motor Show on 2 October EOLAB not only previews innovative technology that is destined to be introduced on production Renaults from now until 2020 but also the vision of such a realistic and affordable B-segment car that will appear within 10 years.


Renault’s designers were closely involved with the EOLAB project from its very early days. In the case of EOLAB Concept, they pushed the design parameters to perfect the car’s styling and paid significant attention to detail in order to optimise aerodynamics and weight. With its sloping roof and breathtakingly slender rear end, the concept car’s true purpose is well masked: beneath its seductively designed shell, everything is geared towards frugality. It demonstrates that Renault is able to add a touch of dream-like magic to a prototype whose fundamental mission is to achieve ultra-low fuel consumption.

EOLAB’s CdA is 0.470m2 (A = 2.00m2 / Cd = 0.235) which represents an overall reduction of 0.200m² (around 30 percent). This lower drag coefficient results in a significant fuel consumption reduction at higher speeds. At a stable speed of 130kph, for example, it accounts for a fuel consumption saving of 1.2 liters/100km in comparison with the benchmark vehicle.

At the same time, the aerodynamicists focused on a variety of technological solutions and innovations. EOLAB’s front bumper, for example, is equipped with an active spoiler that lowers by 10cm at speeds in excess of 70kph in order to restrict airflow beneath the car. Even when a vehicle is designed with a flat underbody, there are still a number of asperities that can detract from aerodynamic efficiency.


The first original aspect is that this is not fixed. Courtesy of a mechanical arm, it moves in accordance with the height of the steering wheel that has been selected by the driver, in order to ensure optimum visibility.

Its content is spread across two digital displays the size of a smartphone: the one on the left provides all the technical information (speed, levels, conventional warnings), while right-hand side display is dedicated to the GPS. The upper part is utilised to display the image generated by the central rear-view camera. The lower part covers all of the multimedia system’s controls (radio, climate control, etc.).

All of the other functions are to be found on the touch screen display, allowing for the dashboard layout to be simplified, in-keeping with the spirit of EOLAB’s uncluttered design. The screen of this 11-inch tablet is divided into two parts. For the first time in the automotive world, the tablet can be fitted either horizontally or vertically, with distinct display graphics for each position. “In the vertical position, the accent is placed upon the sharing of information, which is easily visible to the other passengers. In its horizontal position, the screen is brought closer to the driver, generating a ‘cockpit’ effect, whilst the display graphics becomes warmer and more colourful,” explains Patrick Lecharpy. This unprecedented horizontal and vertical duality required specific studies and research to ensure that the two positions were compatible with the vehicle’s safety features, most notably its airbags.


EOLAB’s axial flux permanent magnet electric motor is powered by a 6.7kWh lithium-ion battery which differs from the batteries that equip Renault’s Z.E. range of electric vehicles. While electric vehicles are designed to store a high amount of energy because of the fundamental need to maximise the vehicle’s range, hybrid vehicles like EOLAB need to cover the same power requirement with a limited quantity of electrical energy. This entails using a different type of battery cell with a higher power/energy ratio.

The resulting battery pack is the fruit of active cooperation between the teams at Renault and the CEA who rose to the challenge of finding smart solutions to come up with a battery pack that is capable of storing a high amount of energy in a smaller volume, while at the same time minimizing weight.

The ‘weekday’ mode favors the use of electrical power for everyday journeys (e.g. from the home to the workplace) in order to get as close to zero tailpipe emissions* and zero fuel consumption* as possible. EOLAB’s range is sufficient to cover 60km* under electrical power. When this mode is selected, the car always pulls away under electrical power and the first gear allows speeds of up to 60/70kph to be reached. At faster speeds, the system automatically engages the second gear and continues to run on electricity alone up to 120kph. Beyond this speed, the hybrid system automatically calls on the internal combustion engine which drives through the third gear.

The ‘weekend’ mode combines both sources of power to permit longer travelling distances. Although the car still pulls away under electrical power, the internal combustion engine is engaged at a lower speed. The two power sources then combine, not only to use less energy but also to benefit from a real power boost thanks to the association of the ICE’s 90kW and the electric motor’s 50kW . In this mode, the battery charges under deceleration and braking (range saver function). The combination of the different gear ratios covers use up to the vehicle’s top speed in hybrid mode.


Nissan Leaf
Toyota Prius

Be part of something big